accion Toxica del bellceno y algunos de sus derluados Museon yacional de medicta

POR
Álvaro león silva

TRABAJO DEL LABORATORIO DE FARMACOLOGÍA Y TERAPEUTICA
DEL PROF. LUIS ESPEJO V.

MEMORIA

PRESENTADA PARA OPTAR AL GRADO DE LICENCIADO EN LA FACULTAD DE MEDICINA Y FARMACIA DE LA UNIVERSIDAD DE CHILE
(Publicado en la Rryista Médica de Chile, 1899)
Museo Nacional de Medicina
25 WWW.MUSEOMEDICINA.CL

Museo Nacional de Medicina

WHW.MUSEOMEDICINA.CL

Museo Nacional de Medicina
WWW.MUSEOMEACCNA. MAESTRO

Doctor LUIS ESPEJO V.

> -

> ढैl Putar

Museo Nacional de Medicina
WWW.MUSEOMEDICINA.CL
8. $=$
\square

ACCIÓN TÓXICA DEL BENCENO

ALGUNOS DE SUS DERIVADOS SOBRE EL HÍGADO Y EL RIÑON Museo Nacional de Medicina ror www．museomediciáluaro león silva
（Trabajo del Laboratorio de Farmacología y Terapéutica del Prof．Luis Espejo V．）

Nuestro objeto es contribuir á dilucidar la acción que el núcleo bencénico ejerce en el organismo．

Un estudio completo sobre esta materia，que abarcaría todos los cuerpos de la serie aromática，habría sido öra superior à Medicina nuestras fuerzas y al tiempo de que hemos podido disponer ${ }^{\text {DICINA．CL }}$ Por esto hemos circunscripto nuestro trabajo á las lesiones que en el hígado y en el riñón determinan las substancias más sim－ ples de este grupo，eligiendo entre ellas el Benceno，como cabe－ za de la serie y el Fenol，la Nitro－bencina y la Anilina como derivados en los cuales la estructura fundamental ha sufrido muy pocas modificaciones．

Tal vez parecerá extraño que hayamos fijado nuestra atención en substancias que \tan reducida aplicación tienen en terapéuti－ ca．Sin embargo，si se piensa que la Farmacología moderna trata ahora de relacionar constantemente la acción fisiológica de los agentes químicos con su composición y jerarquía ató－ mica，se comprenderá que hayamos preferido para nuestra in－
\square

Museo Nacional de Medicina

WWW．MUSEOMEDICINA．CL
vestigación cuerpos en los cuales la acción del núcleo primordial no esté perturbada sino por elementos muy simples y más ó menos conocidos. Así puede llegarse gradualmente á determinar después la acción de las substancias más complejas de la serie, sin perder de vista la parte que en ellas tiene la agrupación atómica fundamental.
No importa que el Benceno ó la Anilina no hayan entrado aún en la práctica médica. Ellos son, en cambio, el origen de infinitos cuerpos cuyos efectos medicamentosos utilizamos día á día y en ellos está el secreto de esta acción. El ácido salicílico, la Acetanilida, la Exalgina, la Fenacetina, los diferentes Musequaries ral esencias diromãticas y hasta muchos alcaloides muestransencelcuadra de sus propiedades biológicas el sello especifico de su tronco genealógico.

Mientras mejor se conozcan los núcleos originales, mejor se conocerán también los compuestos á que dan lugar.

Entre tanto, la fisiología de estas substancias está sólo esbozada y falta mucho para que nos expliquemos claramente los variados fenómenos que determinan.

Así conocemos la intoxicación general producida por el Benceno, el Fenol y la Anilina. Sus diversos síntomas se han estudiado á la luz de la experimentación directa ó de la observación de algunos casos de envenenamiento accidental. Conocemos las propiedades convulsivantes y analgésicas de estos cuerpos. Su acción sobre la temperatura normal y algunas otras perturbaciones funcionales ó fenómenos aislados como qaiaestruceiôn dicina globular, la alteración de la hemoglobina, la hemoglobinuria NA .CL que se encuentra en las intoxicaciones de la Anilina y de sus sales. Pero el mecanismo elemental de la mayor parte de estos fenómenos es todavía muy obscuro y hasta la dosis tóxica es incierta, si hemos de comparar los datos conocidos con el re sultado de nuestras propias experiencias.

Como nuestro objeto no es trazar el cuadro detallado de estos fenómenos, nos abstenemos de reproducir lo que á su respecto hemos podido consultar en la bibliografía que indicamos al fin de este trabajo.

Inútil nos parece por el mismo motivo insertar aquí los protocolos de todas nuestras experiencias. Ellos quedan archivados en el Laboratorio de la clase de Terapéutica, y sobre

 Nuseo Nacional de Medicinaestas últimas daremos sólo una idea general que permita comprender más fácilmente nuestras referencias posteriores.

El estudio que hemos emprendido abraza, como ya lo hemos dicho, el Benceno, el Fenol, la Nitro-bencina y la Anilina.

Las fórmulas estructurales que siguen dejan ver muy claramente el estrecho parentesco de estas cuatro substancias.

 Benceno

Nitro-bencina

Museo Nacional de Medicine

Prescindiendo de sus diferencias químicas, ellas nos presentan además propiedades físicas que pueden modificar mucho las condiciones experimentales bajo el punto de vista de su absorción y difusión intra-orgánica.

El cuadro siguiente indica su solubilidad y punto de ebullición con relación á la dosis mínima tóxica, administrada en inyección peritoneal, que de nuestras observaciones se desprende.

Museo Nacional de Medicina

WWW.MUSEOMEDICINA.CL

	Solubilidad en el agua	Punto de ebullición	Dosis tóxica por K.
Benceno......	Insoluble	$80^{\circ} .6$	$\begin{gathered} \hline \text { Gramos } \\ 0.90 \end{gathered}$
Nitro-bencina.....................	»	213°	0.32
Anilina	1×30	$183{ }^{\circ} .5$	0.11
Fenol.	1×15	183°	0.10

$\begin{array}{r}\text { कौ8 } \\ \times 8 \\ \hline 8\end{array}$
Museo NGominose de, là dosis tóxica guarda una relación muy directa con la solubilidad de la substancia, y tanto esta circunstancia como el punto de ebullición, determinan la mayor ó menor rapidez con que su acción se hace sentir. Así los efectos de la nitrobencina, en que las dos condiciones se reunen, son más lentos en manifestarse, más tardíos también en desaparecer, dando lugar, aun con dosis pequeñas, á lesiones orgánicas más pro. fundas y duraderas. Por el contrario, es muy difícil producir el envenenamiento con este cuerpo cuando se administra por inhalación, así como es fácil en la misma forma el envenenamiento con el Benceno que tiene un punto de ebullición bas. tante bajo. (Nitro-bencina:-Exp. 2. ${ }^{a}-$ Benceno:-Exp. 3. ${ }^{n}$).

Establecidos estos hechos, damos en los cuadros siguientes el resumen de nuestras experiencias.

Museo Nacional de Medicina
WWW.MUSEOMEDICINA.CL

BENCENO

\square

FENOL

NITRO-BENCINA

ANILINA

A 28 asciende, pues, el número total de estas experiencias. Casi todas ellas han sido practicadas en el gato, tratando al principio de fijar aproximativamente la dosis tóxica y buscando siempre condiciones experimentales que nos permitieran esta-

- blecer un punto de comparación en los efectos de estas substancias que tan desigualmente se absorben.

Por este motivo y á fin de regular en cuanto era posible su difusión, hemos recurrido, después de repetidos ensayos, á una

 Museo Nacional de Medicinasolución de aceite de almendras que inyectábamos en el perito. neo.

De esta manera hemos evitado la irritación local y hemos conseguido, por lo menos, introducir estos cuerpos en condiciones idénticas de solubilidad.

Las autopsias se han hecho inmediatamente después de la muerte del animal ó muy pocas horas más tarde cuando ésta ha sobrevenido durante la noche.

Los órganos han sido endurecidos en el ácido ósmico ó el licor de Müller y los cortes microscópicos, teñidos por el picro-carmín ó la hematoxilina.

\section*{| 78 |
| :--- |
| 4 |}

Museo Nacional de Medicina

WWW.MUSEOMEDICINA.CL

II

LESIONES ANATÓMICAS

Pasamos ahora al examen de las alteraciones que hemos encontrado en los órganos que han sido objeto de nuestro estudio.

Benceno

$$
\text { (Lam. 1.a—Fig. } 1 \text { á 11) }
$$

Hígado

Las alteraciones de esta glándula son bien manifiestas y se producen ya una hora después de introducidáa substanciálNA.CL tóxica en el organismo.

Cuando la dosis no es muy considerable y la experiencia ha clurado poco tiempo, como sucede en el caso á que refiere la figura 1, en que, con dos gramos de benceno por kilo, el animal murió al fin de una hora (Esp. 4. ${ }^{a}$, de 27 de mayo de 1898), las células hepáticas presentan sólo los indicios de una degeneración turbia incipiente.-Su protoplasma se ha

- . hecho más granuloso que en el estado normal. En muchas de ellas el núcleo no aparece, oculto por estas granulaciones protoplasmáticas, y en algunas principian á formarse finísimas partículas de grasas que se tiñen de negro por el ácido ósmico.

Museo Nacional de Medicina

WWW.MUSEOMEDICINA.CL

Lo que domina principalmente en este período es una hiperemia intensísima del órgano.-Los capilares, sobre todo en las zonas más cercanas á los gruesos vasos y á los espacios porta, aparecen dilatados y llenos de glóbulos rojos. Muchos de estos se encuentran deformados ó en vía de desagregación. -Las filas de células hepáticas se presentan así separadas unas de otras por la dilatación capilar, y aun muchas de estas célutas se ven comprimidas y deformadas por la misma causa.(Fig. 1).

Si la intoxicación ha sido más intensa y ha tenido más tiempo para desarrollarse, las alteraciones que se observan son Musebuchaciaás aprofundas también.-Tal es el caso que representa la figura 2.-El animal recibió por inyecciones subcutáneas WW Wucesivas, 6.353 gramos ${ }^{L}$ de benceno por kilo, muriendo en el espacio de $3 \frac{1}{2}$ horas. (Exp. 1. ${ }^{\text {a }}$, de 15 de abril de 1898).
Reviste aquí la degeneración grasosa, sus caracteres más típicos. Ella se localiza principalmente en la parte del lobulillo que circunscribe la vena central, disminuyendo gradualmente hacia la periferie como lo demuestra la figura $2-\mathrm{A}$.

Con un mayor aumento (Fig. 2-B) las células de esta zona se ven más ó menos llenas de gotitas de grasa de diferentes tamaños, perfectamente teñidas por el ácido ósmico. Las granulaciones albuminosas son, del mismo modo, más abundantes. El núcleo se tiñe mal por el carmín; en un gran número de células no se distingue, y los contornos de éstas en algunas partes son difusos ó están completamente borradósseo Nacional de Medicina

Los capilares, como en la observación precedente, se ven dilatados, y no solamente ellos sino las venas centrales de los lobulillos y las gruesas ramificaciones de la porta están llenos de glóbulos rojos.
El tejido conjuntivo principia también á sentir en este caso la influencia del veneno. Muchos espacios interlobulares, espacios de Kierman, son el sitio de una infiltración de elementos embrionarios y en algunos de ellos esta infiltración es considerable.
Cuando la vida del animal, en fin, se prolonga durante algunos días, el veneno es capaz de provocar lesiones degenerativas más completas aún. Las figuras 3 y 4 corresponden al higado de un gato que, habiendo sido intoxicado con 0.902 grs.

Tis

 Museo Nacional de Medicinade este cuerpo por kilógramo, murió 7 días después. (Exp. $7 .{ }^{\mathrm{a}}$ de 21 de junio de 1898). Las células se ven en este caso llenas de pigmento sanguíneo que, bajo forma de granulaciones, se acumula en el centro de ellas. La grasa, irregularmente distribuída en el lobulillo, se presenta como una verdadera infiltración, formando grandes vesículas que llenan más ó menos completamente la célula, rechazando el protoplasma y el núcleo (Fig. 4).

Éste, en muy pocas se distingue y los contornos celulares es. tán tan borrados, en algunos puntos, que suelen verse dos y tres células fusionadas en una misma fila.

Las capilares se muestran dilatados como en los casos anteriores; pero los glóbulos rojos en ellos contenidos, están deformados en su mayor parte y en un estado manifiesto de desagreWW Wgación. Daluz de los gruesos vasos está ocupada por un coágulo transparente en medio del cual se distinguen restos de glóbulos rojos, uno ó dos leucocitos y algunas granulaciones de fibrina.

Infiltración de elementos embrionarios no se nota en los espacios interlobulares; pero el tejido conjuntivo está un poco aumentado, principalmente alrededor de los vasos que lo atraviesan.

Riñón

Á fiu de poder comparar la naturaleza ó intensidad de los procesos determinados por el Benceno enlos dos órganos quequedicina hemos elegido como objeto de nuestro estudio, tomamos como base para la descripción de las lesiones que en el riñón se pro. ${ }^{\text {CINA.CL }}$ ducen, las mismas experiencias que nos han servido para describir las alteraciones del hígado.

En un primer período (Exp. 4.a, de 27 de mayo de 1898) do, minan en la substancia cortical las lesiones degenerativas. En los glomérulos el ramillete vascular presenta sus asnas transparentes y vacías. Apenas se distingue en ellas uno que otro glóbulo rojo. El número de núcleos no aparece tampoco aumentado y sólo se nota en él un exudato albuminoso, semi-transparente, ligeramente teñido por el ácido ósmico. El epitelio de la cápsula de Bowmann no se distingue, aplastado por el abundante exudato que llena su cavidad. Éste es también semi-

Museo Nacional de Medicina

transparente en algunos glomérulos, recordando el estado de simple trasudación descripto por Hortoles; pero en la mayor parte está constitúdo por una substancia granulosa con algunos globos coloídeos y numerosos gránulos de grasa. En torno de la cápsula no se ven glóbulos rojos sino en muy pequeño número y en uno que otro glomérulo; ni hay tampoco infiltración alguna de elementos embrionarios (Fig. 5).
(8) Los tubos contorneados ofrecen los diferentes grados de la degeneración gránulo-grasosa. En algunos, donde las lesiones no están muy avanzadas, aun se conserva una ligera demarcación entre las células que muestran sus núcleos muy regularmente distribuidos; pero ellas están hipertrofiadas y numerosas y finas granulaciones de grasa esparcidas, se distinguen en su WW protopfasma. EDICINA.CL

En la mayor parte de estos tubos, la degeneración epitelial es más profunda todavía. En unos no hay demarcación ninguna entre las células y el epitelio, se extiende á lo largo ó en torno de las paredes del tubo como una capa uniforme de protoplasma sembrado de granulaciones grasosas y de núcleos más ó menos regularmente distribuídos. En otros, la desagregación celular principia, y flas células parecen haber vaciado una parte de su protoplasma en la luz del tubo.

En todos estos tubos existe un exudato, transparente en la mayor parte, granuloso en algunos, que se presenta bajo forma de areolas cuyas trabéculas bien teñidas por el ácido ósmico, parecen continuarse con la membrana celularidFig. वे Medicina

Los tubos rectos no quedan tampoco exentos de alteración En ellos, el proceso es menos intenso que en los tubos contor neados y reviste más bien un carácter catarral. En las pirámides de Ferrein, su epitelio, unas veces, se presenta hinchado; - .-... y en vía de proliferación, tomando una forma poliédrica por la presión recíproca de sus células, y llenando así completa. mente la luz del canalículo; otras veces, sus células, semi-vesiculosas, con un núcleo y un nucleolo bien manifiesto, parecen colgar, prontas á descamarse, de la pared del tubo. En ciertos puntos el epitelio sufre una franca desagregación. La cavidad de éste, cuando no está llena por células descamadas ó proliferadas, está ocupada por un exudato granuloso entrecortadu por algunas trabéculas (Fig. 6-a y b).

4.4 3 48

 Museo Nacional de MedicinaWWW.MUSEOMEDICINA.CL

En toda esta región cortical no se distinguen vasos dilatados ó llenos de sangre. Las venas sub-corticales y las arterias glomerulares aparecen vacías ó sólo con algunos filamentos de fibrina en su interior.

En la región intermediaria y medular, por el contrario, la congestión es intensísima. Los capilares están dilatados y llenos de glóbulos rojos. En algunos puntos se notan verdaderas hemorragias (Fig. 7 b).

En estas mismas regiones los tubos rectos y las ansas de Henle se muestran llenas de cilindros granulosos sembrados de núcleos que atestiguan su origen epitelial.
Museo Fnciuna intoxicación más intensa, sucede en el riñón lo mismo que sucede en el higado. Las lesiones descriptas, sin camWW Ubiar de naturaleza, comprometen más profundamente los elementos glandulares. Las figuras $8,9,10$ y 11 dan cuenta de estas alteraciones. Ellas se refieren á la experiencia antes indicada, en que con 6.353 grs. de benceno por kilógramo, fué muerto el animal en el espacio de $3 \frac{1}{2}$ horas.-(Exp. 1. ${ }^{\text {a }}$, de 15 de abril de 1898).

El exudato acumulado en la cápsula de Bowmanu es mucho más abundante y está compuesto de una masa granulosa con glóbulos coloídeos y numerosas granulaciones de grasa. El dilata y deforma la cápsula, comprime el glomérulo y se continúa en el tubo contorneado. Las ansas del ramillete vascular se ven, así separadas por este exudato, atrofiadas muchas veces, y completamente exangües. El núıere dêaácleos, chás/ledicina ó menos normal en los glomérulos que no están muy comprimidos por el exudato capsular, disminuye considerablemente en aquellos que, como el que representa la figura 8, se encuentran en un verdadero estado de atrofia.
$\therefore \quad$ Fuera de la cápsula y en la raíz de los vasos glomerulares suelen verse acumulados algunos elementos embrionarios. Esta infiltración, insignificante en toda la zona cortical, es sin embargo, abundante en algunos glomérulos cercanos á la substancia intermediaria y á sus gruesos vasos.
Los tubos contorneados ofrecen el último grado de la degeneración gránulo grasosa. Ya no se distingue sino en muy pocos algunos restos de tabiques celulares con una pequeña capa de protoplasma adherente á las paredes. Hay una desintegración

काष 8 48 4

 Museo Nacional de MedicinaWWW.MUSEOMEDICINA.CL
completa del epitelio y el producto de esta desintegración llena la luz del tubo bajo la forma de una masa granulosa teñida en su mayor parte de negro por el ácido ósmico, surcada por algunas trabéculas y sembrada de núcleos y glóbulos coloídeos, que en ella se distribuyen irregularmente. El tubo está enormemente dilatado (Fig. 9).

Los tubos rectos de las pirámides de Ferrein se presentan Henos con los productos de una franca y abundante descamación celular. Sus células, libres en la cavidad, han conservado en su mayor parte, la forma cúbica ó cilíndrica que los caracteriza; pero su protoplasma se muestra sembrado de abundantes granulaciones de grasa (Fig. 10).

En la substancia intermediaria y medular ya no se distingue WWdentro de estos mismos canalículos sino una que otra célula con sus contornos bien netos. La luz del tubo está llena de una masa granulosa donde se ven desparramados, sin orden alguno, numerosos núcleos. Un verdadero cilindro gránulo-grasoso se ha constituído (Fig. 11).

Las ansas de Henle presentan alteraciones semejantes.
Los capilares de la pirámide de Malpighio, sólo en algunos puntos de su base, se ven dilatados y llenos de glóbulos rojos.

En el tejido conjuntivo que rodea los gruesos vasos de la región intermediaria hay una manifiesta infiltración de elementos embrionarios. Lo mismo se observa alrededor y, sobre todo, en la raíz de algunos glomérulos vecinos á esta región. Museo Nacional de Medicina

En un período más avanzado (Exp. 7.a, de 21 de junio de 1898) estas lesiones llegan á la destrucción casi completa de $1 \mathrm{CINA.CL}$ todos los elementos de la glándula. Los glomérulos se encuentran atrofiados y convertidos muchos de ellos en una masa semivitrea donde apenas se diseñan los contornos de algunas ansas manaidemach vasculares. Sus núcleos desaparecen casi por completo. La cápsula de Bowmann está ligeramente engrosada y presenta una estructura fibrilar. El exudato capsular, conservando su aspecto granuloso, se retrae y toma una forma más concreta. Los vasos peri-capsulares se ven dilatados y lleuos de gló* bulos rojos. En algunos puntos, ya en los contornos del glomérulo, ya entre los tubos mismos, se ven espacios más ó menos grandes, llenos de un coágulo semi-transparente con al-

Museo Nacional de Medicina
WWW.MUSEOMEDICINA.CL
gunos glóbulos rojos en su centro que atestiguan las extravasaciones sanguíneas que allí se han producido.

Los tubos contorneados, los tubos rectos, las ansas de Henle no ofrecen en su interior más que los restos de una profunda desorganización celular. El calibre de ellos está lleno de una substancia gránulo-grasosa donde se ramifican algunas trabéculas y donde ni siquiera los núcleos se han conservado

Sólo algunos tubos rectos se presentan con su epitelio intacto ó en simple estado de descamación.

En la región intermediaria y base de la pirámide de Malpighio todos los canalículos estáu llenos de cilindros granulosos. Museo Lasicapilares de esta misma región se ven dilatadas y con numerosos glóbulos rojos deformados y desagregados en su WW Winterior. MEDICINA.CL

En torno de los gruesos vasos el tejido conjuntivo está manifiestamente aumentado.

Resumen

Consideradas en conjunto las alteraciones producidas por el Benceno en los dos órganos que hemos examinado, observamos que ellas obedecen á un proceso semejante. Una hora después de introducido el veneno en el organismo aparecen en el hígado los primeros indicios de una degeneración turbia de sus células, acompañada de una gran hiperemiacapilar. Desvledicina pués, si la dosis es suficiente, y la intoxicación permite vivir al animal más largo tiempo, las lesiones celulares se acentúan, llegando á la completa degeneración grasosa. El tegido conjuntivo, sobre todo alrededor de los gruesos vasos, se infiltra de elementos embrionarios y más tarde aumenta en cantidad y en extensión.

En el riñón el exudato que se produce en la cápsula de Bowmann y que después es causa de compresión y atrofia para el glomérulo, la degeneración gránulo-grasosa del epitelium de sus tubos, su descamación y desintegración posterior, la acumulación de leucocitos en torno de las arteriolas glomerulares y en el tejido conjuntivo de la región intermediaria,

8
 Museo Nacional de Medicina
 WWW.MUSEOMEDICINA.CL

Explicación de la Lám. I

INTOXICACIÓN CON EL BENCENO

Fig. 1.-Corte de hígado. Parte vecina á un espacio porta. (Gato intoxicado con 2, 0.0 gr . de Benceno por k. Muerte una hora después. Exp. 4.^, de 27 de mayo de 1898).
A) Espacio porta. .) Capilares dilatados y llenos de glóbulos rojos; b) Finas granulaciones de grasa teñidas por el ácido ósmico; c) Células en que no se distingue núcleo; d) Capilar cortado al través; e) Núcleo y nucléolo en una célula normal.
(Aum.: Oc. 1; Obj. 7.-Verick)
Fig. 2.-A. Corte de un lobulillo hepático. (Gato intoxicado con 6.353 grs . de bencina por k. Muerte 31 horas después. Exp. 1.^ de 15 de abril de 1898).
V) Vena central del lobulillo. a) Filas de células en degeneración grasosa y zona afectada principalmente por esta alteración.
(Aum.: Oc. 1; Obj. 2.-Verick)
B. La misma preparación anterior vista con mayor anmento.
V) Vena central. a) Células en degeneración grasos.; b) Gruesas granulaciones de grasa teñidas por el ácido ósmico; c) Granulaciones protoplasmáticas; d) Núcleo.
(Aum.: Oc. 3; Obj. 7.-Verick)
Fig. 3.-Corte de hígado. Parte vecina í un espacio porta. (Gato intoxicado con 0.902 gr. de bencinu por k. Muerte el $7 .^{\circ}$ dia. Exp. $7 n^{n}$ de 21 de junio de 1898).
a) Capilares dilatados y llenos de glóbulos rojos; b) Granulaciones de pigmento sanguíneo; c) Granulaciones de grasa
Museo Nacional de 1(Aum. © Oca3, Obj. 7.-Verick)
Fig. 4.-Células hepáticas de la mi ma preparación observadas en los puntos donde la degeneración grasosa es más intensa.
a) Pigmento sanguíneo; b) Cavidades que han dejado libre gruesas gotas de grasa que han salido por las manipulaciones de la preparacion; c) Celula en que la grasa teñida por el ácido ósmicrs ha quedado en su lugar; d) Gota de grasa que ocupa toda la célula, rechazando hacia la periferie el protoplasma y el núcleo; $e)$ Núcleo.
(Aum.: Oc. 3; Obj. 7.-Verick)
Fig. 5. - Corte de riñ6n. Región cortical. (Gato intoxicado con 2.00 gr . de Benceno. A/uerte en una hora. Misma experiencia de la figura 1).
a) Glomérulo con sus ansas dilatadas y transparentes; b) Ansas del ramillete vascular; c) Capilares del mismo cortados al través; d) Exudato granuloso acumulado entre la cápsula y el glomérulo; e) Exudato en forma de areolas que llena la cavidad de los tubos contorneados; f) Tubos contorneados; g) Célula epitelial de éstos hipertrofiada; h) Grannlacioaes grasosas; i) Capilar peri-glomerular.
(Aum.: Oc. 1; Obj. 7.-Verick)
Fig. 6.-La misma preparación de la figura anterior. Tubos rectos de las pirámides de Ferrein.
a) Tubo en el cual el epitelio ha tomado una forma poliédrica, llenando completamente su luz; b) Tubo en el cual el epitelio se ve hinchado en partes y en otras en vía de desagregación. La luz del canalículo está ocupada por un exudato granuloso surcado de algunas trabéculas.
(Aum.: Oc. 1; Obj. 7.-Verick)
Fig. 7.-La misma preparación y experiencia de la figura anterion Capriares de la Me Micina región intermediaria.
a) Capilar vacio; b) Foco de hemorragia capilar llenode/glóbulos rojos; ©) DICINA.CL Canalículo renal.
(Aum.: Oc. 1; Obj. 7.-Verick)
Fig. 8.-Glomérulo de Malpighio con su cápsula, (Gato intoxicado con 6.353 gr . de bencina por K. Misma experiencia de la figura 2).
a) Ramillete vascular comprimido por el abundante exudato que se ha acumulado dentro de la cápsula de Bowmann; b) Exudato granuloso; c) Origen de un tubo contorneado.
(Aum.: Oc. 3; Obj. 7.-Verick)
Fig. 9.-Tubos contorneados. Misma preparación de la fig ra anterior.
a) Núcleos irregularmente esparcidos en la masa granulosa que llena el tubo; b) Granulaciones finas de grasa teñidas por el ácido ósmico.
(Aum.: Oc. 3; Obj. 7.-Verick)
Fig. 10.-Tubo recto de las pirámides de Ferrein. Misma preparación de la figara anterior.
a) Celulas descamadas; b) Granulaci nes de grasa teñidas por el ácido ósmico: c) Células hinchadas que aun adhieren á la pared del tubo.
(Aum.: Oc. 3, Obj. 7.-Verick)
Fig. 11.-Tubo recto de la región intermediaria. Misma preparación de la figura anterior.
a) Células que aun pueden distinguirse en medio del detritus que llena la luz del tubo.

> (Aum.: Oc. 3; Obj. 7.-Verick)

$$
f_{i g}: 2
$$Museo Nacionitidnoedicina- wWW AMg.is ventitita

\qquad

Fig-8 WWW.MUSEOMEDICINA.CL
manifiestan que en este órgano, como en el hígado, todos los tejidos están comprometidos por el proceso tóxico.

En uno y otro caso una verdadera inflamación difusa se produce en que predominan las lesiones degenerativas del elemento glandular.
a mew.mustomtocina. al

Museo Nacional de Medicina
WWW MUSEOMEDICINA.CL

Museo Nacional de Medicina WWW.MUSEOMEDICINA.CL
\square

Fenol

(Lám. II.-Fig. 1 à 6)

Sólo tres experiencias hemos hecho con este cuerpo, de las Musecuales idosahaip termaivado con la muerte del animal. En una de ellas (Gxp ${ }^{2} \cdot{ }^{\text {a }}$. de 19 de mayo de 1898) éste sucumbió después de 28 horas a una dosis de 0.102 gr . por kilogramo. En la otra, (Exp. 1. ${ }^{\text {a }}$, de 4 de mayo de 1895) la muerte se produjo al cabo de $\frac{1}{2}$ hora con una dosis de 0.200 gr . por kilogramo.
Las piezas de estas autopsias, si no nos permiten establecer conclusiones generales, por lo menos nos revelan la naturaleza de las lesiones que el Fenol es capaz de determinar.

Higaro

El órgano presenta al corte, en la primera y más débil de las intoxicaciones indicadas, una superficie lisa y brillante, de color concho de vino con puntos amarillentos que corresponden á la zona central de los lobulillos. Museo Nacional de Medicina

Un corte microscópico, tratado por el ácido ósmico y examinado con pequeño aumento, revela una degeneración grasosa incipiente, que, aunque aparece un poco mayor en los contornos de la vena central no se localiza sistemáticamente en esa parte como sucede con el Benceno, sino que se extiende más uniformemente por todo el lobulillo. (Fig. 1).

Estudiadas en detalle i con mayor aumento, las células muestran sus contornos algo borrados en ciertas partes. Su protoplasma es más granulosa, hasta el punto de ocultar en muchas de ellas el núcleo. En su interior se ven numerosas gotitas de grasa, hien tefidas por el ácido ósmico, pero nunea tan voluminosas que llenen una gran porción de la célula. (Fig. 2-a). La grasa se presenta más bien al estado de finas granulaciones.

Museo Nacional de Medicina

WWW.MUSEOMEDICINA.CL

Algunas células contienen dos núcleos con sus nucleolos respectivos. (Fig. 2-d).

En algunos puntos, y sobre todo en las partes vecinas de los espacios peri-lobulares y de los vasos porta, los capilares se encuentran dilatados y con glóbulos rojos en su interior.

Con una dosis doble de la precedente, la muerte fué más rápida ($\frac{1}{2}$ hora); i las alteraciones producidas fueron más intensas. (Exp. 1.a, de 4 de mayo de 1898).

Las células ofrecen en este caso contornos poco netos. En algunas están enteramente borrados, fusionándose los unas con las otras. La mayor parte ha sufrido una profunda degeneración grasosa que ya no afecta la forma de granos ó pequeños Muglébulos, sino de graurdes yesículas que llenan más ó nienos la célula, rechazando hacia la periferie el núcleo y el protoplasWW ma que queda reducidó á una finísima creciente ó desaparece en absoluto. (Fig. 3).

En muchas células se ve también un abundante depósito de pigmento sanguíneo bajo forma de granulaciones.

La distribución de la grasa es uniforme en todo el lobulillo. El pigmento sanguíneo se localiza preferentemente en los puntos donde la congestión es mayor. (Fig. $3 \cdot a$).

Las capilares están sumamente dilatados, llenos de glóbulos rojos, en parte deformadas y á veces en vía de desagregación.

Nada de particular se observa en el tejido conjuntivo ni en los gruesos vasos. En éstos suele conservarse, adherida á sus paredes, una delgada capa de fibrina con algunos glóbulos blancos más ó menos degenerados.

Museo Nacional de Medicina
WWW.MUSEOMEDICINA.CL Rinón

A pesar de la diferencia de dosis, no son tan marcadas las (-. variaciones de intensidad que el proceso reviste en una y otra de las dos experiencias que consideramos. Sin embargo, si hemos de compararlas, debemos de reconocer que en el riñón el grado de estas alteraciones guarda más relación con el tiempo en que la intoxicación se ha desarrollado que con la dosis misma. Así la destrucción de los elementos glandulares es más completa en la experiencia de 19 de mayo en que el animal sobrevivió más de 28 horas, que en la experiencia de 4 de
mayo en que murió al fin de media hora con una dosis doble. Lo contrario hemos visto que ha sucedido en el hígado. Dejamos sólo constancia de esta diferencia.

En la primera de las experiencias mencionadas (Intoxicación con 0.102 gramos de Fenol $\times K$. Muerte en más de 28 horas), los glomérulos presentan sus ansas vacías y dilatadas. Los núcleos que ordinariamente se observan en él han desaparecido casi totalmente. La cavidad de la cápsula de Bowmann es el sitio de un abundante exudato gránulo-grasoso con algunos núcleos y muchos glóbulos coloídeos. Este exudato penetra en la luz del tubo contorneado (Fig. 4). El endotelium capsular se conserva en su lugar, y sus células se ven aplastadas por el exu-

Museodato (Digal 4.c).Medicina

La mayor parte de los tubos contorneados están dilatados y su epitelium ha sufrido una profunda desintegración, cuyos productos llenan completamente la luz del canalículo bajo la forma de una sustancia granulosa donde algunos núcleos y glóbulos coloídeos se "mezclan á finas granulaciones de grasa teñidas de negro por el ácido ósmico. Apenas se distingue uno que otro rudimento celular (Fig. 4-1). En otros tubos el proceso no es tan avanzado. El epitelium se mantiene adherido á la pared del tubo; pero todo contorno celular ha desaparecido y el protoplasma, en una degeneración turbia manifiesta, forma una capa continua en la cual sólo los núcleos, muy regularmente dispuestos, señalan la distribución primitiva de las células (Fig. 4-k).

El epitelium de los canalículos que constituyen las pirami- Medicina des de Ferrein ha perdido en todos sus/ caracteres enormales. IN A.CL Sus células se encuentran en estado de degeneración gránulograsosa, descamadas en algunas partes y en vía de desintegración en muchas.

Estos mismos tubos, en la sustancia intermediaria y medular aparecen llenos de verdaderos cilindros granulosos sembrados de núcleos. Algunos se ven comprimidos y estrechados por la dilatación de los capilares vecinos.

- En la experiencia de 4 de mayo (Intoxicación con 0.200 gra mos de Fenol. Muerte en media hora) las glomérulos ofrecen más bien las apariencias de un simple estado congestivo. En algunos el ramillete vascular llena completamente la cápsula y en

48

Museo Nacional de Medicina

WWW.MUSEOMEDICINA.CL
sus ansas se ven numerosos glóbulos rojos. En otros hay un exudato uniforme, semi-transparente i más ó menos abundante. En muy pocos el exudato es francamente granuloso.

En los tubos contorneados la desintegración epitelial es mucho menor que en la experiencia precedente. En unos, las células, perdidos sus contornos, forman en revestimiento protoplasmático continuo, donde se distinguen algunos núcleos, muchas granulaciones grasosas, y donde, á trechos, sobresale alguna célula hipertrofiada con un gran núcleo y un nucléolo bien manifiesto. En otros tubos se nota un principio de degeneración vesiculosa en diferentes faces. Ya es sólo el vértice Mde da célula flaque se presenta transparente, ya se ven glóbulos coloídeos en su interior, ya la célula, hinchada y distenW Mida; Marece Maberse roto, ${ }^{-}$vaciando su contenido en el tubo (Fig. 5-d).

En muchos tubos sólo quedan esqueletos celulares que llenan su calibre bajo la forma de un exudato areolar donde uno que otro núcleo se distingue (Fig. 5-a).

Numerosas granulaciones de grasa se observan tanto en el protoplasma de todas las células cuanto en el exudato tubular.

Los tubos rectos de la sustancia cortical, (pirámides de Fe. rrein) muestran también lesiones semejantes. Algunos presentan un epitelium hinchado, en muchas de cuyas células se ve un principio de transformación vesiculosa. La tercera parte ó la mitad de la célula que mira hacia la luz del/tubocselhaibectiode Medicina transparente. Á veces toda una fila de células afecta esta forma mientras las células opuestas ofrecen un protoplama uniformemente granuloso. El hinchamiento epitelial ha borrado completamente el calibre del tubo. (Fig. 6-a).
En otros canalículos el proceso es más avanzado y las células menemandender enteramente degeneradas y en vía de descamación, llenan la luz del tubo. (Fig. 6-b).

En la sustancia intermediaria y medular, en la mayor parte de los tubos rectos y de las ansas de Henle se ven cilindros granulosos donde sólo se distinguen numerosos núcleos.

Tanto en la primera de estas zonas como en la sustancia cortical hay puntos donde se han producido verdaderas hemorragias.

Museo Nacional de Medicina

Resumen

En el higado una degeneración turbia de sus células que terminan en una completa degeneración, depósitos de pigmento sanguíneo en su protoplasma y una gran dilatación capilar son los fenómenos que dominan la intoxicación fenólica.

El riñón es el sitio de una nefritis difusa aguda caracterizada principalmente por la degeneración gránulo-grasosa de los elementos glandulares cuando la intoxicación se ha desarrollado con cierta lentitud y acompañada de una gran congestión Museo glomerular X de un principio de transformación vesiculosa de los epiteliums en aquellos casos en que una dosis más fuerte ha WW W. M producido rápidâmente la muerte.

Nitro-bencina

$$
\text { (Lam. II.-Fig. } 7 \text { a 12) }
$$

Higado

Rápidas y grandes son las alteraciones producidas por la Nitro-bencina en este órgano. Antes de una hora ya se manifiestan con toda claridad. Ellas están caracterizadas principalmente en las intoxicaciones de corta duración como en lafexticina periencia $4^{\text {a }}$, de 27 de mayo de 1898, en que con una dosis de 1.370 gr. por kilogramo, el animat sucumbió en ${ }^{\mathrm{E}} 57^{4}$ minatos, $\mathrm{A} . \mathrm{CL}$ por una degeneración grasosa que se localiza en la parte central é intermediaria del lobulillo hepático y respeta casi totalmente la periferie. (Fig. 7-a). Las células de las zonas inva didas por esta degeneración se presentan llenas de gotitas de grasa de diferentes tamaños y bien teñidas por el ácido ósmico. El resto del protoplasma es granuloso. En algunas células la grasa ha caído dejando algunos vacuolos en su interior. Muy pocas núcleos se distinguen y los contornos celulares aparecen en parte borrados, confundiéndose una célula con otra. (Fig. $8-\mathrm{a}-\mathrm{b})$.
En la zona periférica no se ven, sino en una que otra célula,
\square Museo Nacional de Medicina
www.museomedicina.cl
vesículas de grasa; pero en todas ellas el protoplasma es muy granuloso y en la mayor parte el núcleo no se distingue. Domina la degeneración turbia. (Fig. 8 c-d-e).

En algunas células se observan granulaciones de pigmento sanguíneo.

Los capilares en ciertos puntos se encuentran dilatados y con glóbulos rojos ó granulaciones pigmentarias en su interior.
A $=$ En otros casos, cuando la intoxicación se ha desarrollado lentamente, aun con dosis relativamente pequeñas, las lesiones destructivas son mucho más profundas.

Así en la experiencia $6 .^{\text {a }}$, de 21 de junio de 1898 se adminis-
 gramo. La muerte se produjo al cuarto día. Las alteraciones del higado FFegaron at iflímo grado del proceso degenerativo.

En cortes tratados por el ácido ósmico las células se presentan llenas de gruesas vesículas de grasa que en algunas partes han caído dejando un vacuolo en su lugar, y en otras se muestran transparentes por no haber llegado tal vez hasta ellas el reactivo. Estas vesículas se aglomeran en número de cinco ó más en una célula. A veces se fusionan en una sola. Muy poco protoplasma, lleno de granulaciones albuminosas y de finos granos de grasa queda entre ellas, y los núcleos solo en una que otra célula son visibles (Fig. 9). Los contornos celulares en algunas partes están completamente borrados, confundiéndose dosó tres células en una masa única. La distribución de la grasa no tiene nada de regular. Es general y difưsa. Nacional de Medicina

Partes hay donde esta desorganización es mayor todavía EDICINA.CL Apenas se conservan restos de una estructura celular en medio de una red de finas trabéculas donde sólo se distinguen vesículos de grasa, granulaciones pigmentarias y ramificaciones del tejido conjuntivo perilobular, que está aumentado.

Las capilares, dilatados y llenos de glóbulos rojos, comprimen y deforman las células vecinas.

En un primer grado de intoxicación (Exp. 4. ${ }^{\text {a }}$, de 27 de mayo de 1898), los glomérulos no son el sitio de grandes alteraciones. Algunos están ligeramente congestionados, distinguiéndose en

Museo Nacional de Medicina

ellos glóbulos rojos dentro y fuera de sus ansas. En otros los capilares están vacíos. En todos se nota en la cápsula de Bow. mann un pequeño exudato en forma decreciente, ya homogéneo, ya granuloso.

En cambio los tubos contorneados han sufrido un proceso más intenso. En algunos las células no se presentan deformadas; pero han perdido sus contornos y ofrecen un protoplasma gránulo-grasoso. En la mayor parte el epitelium está hinchado y el vértice de la célula y á veces la mitad de ella se ve transparente y en vía de transformación vesiculosa. Algunas células aparecen rotas como si hubieran vaciado su contenido

電Museo endadual delNtubocinHay algunas extraordinariamente alargadas (Fig. 10-a),

Los tubos rectos en la sustancia cortical están llenos por un epitelium hinchado, cuyas células se han convertido en poliédricos por la presión recíproca. El contorno de ellas en algunas partes del tubo se diseña por una línea finamente granulosa que hace el efecto de que la sustancia intercelular misma hubiera sufrido una degeneración semejante á la del protoplas. ma (Fig. 11). En otros tubos las células se presentan con sus contornos bien netos; pero están hinchadas, transparentes y llenan completarmente el canalículo.

En la sustancia intermediaria y base de la pirámide de Malpighio las mismas alteraciones se notan. En muchos tubos, sin embargo, esta desorganización es más avanzada y se vun muchas células que están desagregándosê/comaplettamiente! de Medicina

Algunos tubos están llenos sólo de una sustancia granulo. sa con muchos núcleos en su interior.

Los capilares sólo en algunos puntos de la región cortical se notan dilatados y con glóbulos rojos. Esta congestión es más pronunciada en la substancia medular, donde han llegado ámater producirse pequeñas hemorragias intersticiales y tubulares.

Si la intoxicación ha durado más largo tiempo, tres días por ejemplo, como en la experiencia 6 . $^{\text {a }}$, de 21 de junio de 1898, aun A- Con una dosis menor, se observan en el riñón, lo mismo que en el hígado, lesiones mucho más profundas.

Una congestión intensísima domina en toda la zona cortical é intermediaria. Los capilares del ramillete glomerular distendidos y llenos de glóbulos rojos ocupan completamente la cáp-

Ther 68 483

 Nuseo Nacional de MedicinaWWW.MUSEOMEDICINA.CL

